Compression of Surface Texture Acceleration Signal Based on Spectrum Characteristics
Compression of Surface Texture Acceleration Signal Based on Spectrum Characteristics
Blog Article
Background: Adequate-data collection could enhance the realism of surface texture haptic online-rendering or offline-playback.A parallel challenge is how to reduce communication delays and improve storage space utilization.Methods: Based on the similarity of the short-term amplitude spectrumtrend, this paper proposes a frequency-domain compression method.
A compression framework is designed, firstly to map Sta-Rite System 2 Parts the amplitude spectrum into a trend similarity grayscale image, compress it with the stillpicture-compression method, and then to adaptively encode the maximum amplitude and part of the initial phase of each time-window, achieving the final compression.Results: The comparison between the original Pouch signal and the recovered signal shows that when the time-frequency similarity is 90%, the average compression ratio of our method is 9.85% in the case of a single interact point.
The subjective score for the similarity reached an excellent level, with an average score of 87.85.Conclusions: Our method can be used for offline compression of vibrotactile data.
For the case of multi-interact points in space, the trend similarity grayscale image can be reused, and the compression ratio is further reduced.